US009342901B2

a2z United States Patent (10) Patent No.: US 9,342,901 B2
Maillot et al. (45) Date of Patent: May 17, 2016
(54) MATERIAL DATA PROCESSING PIPELINE 5,991,770 A 11/1999 Zamora-McKelvy et al.
6,128,540 A 10/2000 Van Der Vegt et al.
CTEFA ; . ; 6,151,624 A 11/2000 Teare et al.
(75)  Inventors: %eorl‘l’rl?lflglﬁgigf (giz)aux (FR); Erie 6253366 Bl  6/2001 Mutschler, III
’ 6,456,288 Bl 9/2002 Brockway et al.
. 6,518,989 Bl 2/2003 Ishikawa
(73) Assignee: AUTODESK, Inc., San Rafael, CA (US) 6,574,791 Bl 6/2003 Gauthier et al.
6,867,781 Bl 3/2005 Van Hook et al.
(*) Notice:  Subject to any disclaimer, the term of this 2,525,835 g} ggggg IETiXOIl ft ill~
i i 247, ynn et al.
%atselg llssixée%de%%rs Ziju“ed under 35 7,023,437 Bl 4/2006 Voorhies et al.
S.C. 154(b) by ys. 7,266,616 BL* 92007 Munshi etal. ............ 709/246
(21)  Appl. No.: 12/259,205 (Continued)
. OTHER PUBLICATIONS
(22) Filed: Oct. 27, 2008
Office Action in U.S. Appl. No. 12/040,725 mailed Jun. 7, 2011.
(65) Prior Publication Data (Continued)
US 2010/0103171 Al Apr. 29, 2010
(51) Int.CL Primary Examiner — Hau .Nguyen .
GO6F 15/00 (2006.01) (74) Attorney, Agent, or Firm — Artegis Law Group, LLP
GO6T 11/00 (2006.01)
(52) US.CL 57 ABSTRACT
(0] G GO6T 11/001 (2013.01) A method for generating a shader that is used by a rendering
(58) Field of Classification Search engine to render a visual representation of a computer model.
CPC ... GO6T 11/001; GO6T 15/00; GO6T 15/005; A shader generation engine receives a set of surface data that
GO6T 9/00; GO6T 9/001 describes a surface in view of various lighting conditions. The
USPC o 345/501, 426, 582 shader generation engine compresses the set of surface data to
See application file for complete search history. generate a compressed representation of the set of surface
data based on a selected compression algorithm. The shader
(56) References Cited generation engine generates a shader based on the com-

U.S. PATENT DOCUMENTS

pressed representation that is configured to be implemented
with a rendering engine, and generates a set of shader data
based on the compressed representation that includes a set of

5481,665 A 1/1996 Okada et al. ! Tes ntatio. C
5,604,824 A * 2/1997 Chuietal. ..o, 382/248 material characteristics for coloring pixels of the visual rep-
5,617,564 A 4/1997 Tomotake resentation. Advantageously, the shader generation process is
g’ggg%g‘z‘ ﬁ } % }gg; Elidsm cal simplified because different compression algorithm-render-
,696, edmann et al. . . s :
5710.878 A 1/1998 McCoy et al. ing engine shader cgmblnatlons can be generated without
5790131 A * 81998 Liangetal oo 345/660 ~ manually programming the shaders.
5,835,093 A 11/1998 Fujishita et al.
5,886,701 A 3/1999 Chauvin et al. 30 Claims, 5 Drawing Sheets
310 320~ 330y / 30
COMPRESSION RENDERING
ALGORITHM 1 ENGINE 1
5 s
s
COMPRESSION RENDERING
ALGORITHM 2 ENGINE 2
1 :
3102 SHADER 330-2-M
COMPRESSION RENDERING
ALGORITHM N ENGINE M
! :
o
REPRESENTATION-
COMPRESSION RENDERING SPECIFIC
ALGORITHMS ENGINES SHADERS




US 9,342,901 B2

Page 2
(56) References Cited 2007/0083805 Al 4/2007 Randazzo et al.
2007/0165035 Al 7/2007 Duluk, Jr. et al.
U.S. PATENT DOCUMENTS 2007/0195085 Al /2007 Farinelli
2007/0233678 Al  10/2007 Bigelow
7307,640 B2 12/2007 Demers et al. 2007/0268297 Al* 11/2007 Novosad .........coovvrne.. 345/501
7,412,404 Bl 8/2008 Tenorio 2008/0088630 Al 4/2008 Bakalash et al.
7,423,653 B2 9/2008 Gettman et al. 2008/0091491 Al 4/2008 Thorpe et al.
7,523,411 B2 4/2009 Carlin 2008/0266296 Al* 10/2008 Rameyetal. ................. 345/440
7,574,659 B2 8/2009 Szabo 2009/0073187 Al* 3/2009 Rampsonetal. ... 345/619
7,596,418 B2 9/2009 Bugosh 2009/0138113 Al 5/2009 Hoguet
7,624,349 B2 11/2009 Seemann et al. 2009/0160856 Al 6/2009 Hoguet
7,629,985 B2 12/2009 McArdle et al. 2009/0222469 Al 9/2009 Maillot et al.
7,640,496 Bl 12/2009 Chaulk et al. 2009/0251478 Al 10/2009 Maillot et al.
7,701,461 B2 4/2010 Fouladi et al. 2009/0254611 Al  10/2009 Pena et al.
7,840,937 Bl 11/2010 Chiluvuri 2009/0265301 Al  10/2009 Chen et al.
7,878,148 B2 2/2011 Swenson et al. 2010/0046846 Al* 2/2010 Brown .................. 382/233
8,024,721 B2 9/2011 Matic OTHER PUBLICATIONS
8,091,069 B2 1/2012 Rojer
2002/0030689 Al 3/2002 Eichel et al. Office Action dated Aug. 6, 2009 for German Pat. App. No.
2002/0039101 Al 4/2002 Fernandez et al. 102009007334.5.
2003/0031371 A1*  2/2003 Katoetal. .....ccooeennnes 382/239 English Translation of Office Action dated Aug. 6, 2009 for German
2003/0167213 Al 9/2003 Jammes et al. Pat. App. No. 102009007334.5.
2003/0226116 Al  12/2003 Kuwata et al. “Bildsynthese” (German), Wikipedia, available at http:/de.
2004/0109563 Al*  6/2004 Evansetal ............. 380/227 wikipedia.org/wiki/Bildsynthese, Aug. 2009.
2004/0162845 Al 8/2004 Kim et al. “Grafikpipeline” (German), Wikipedia, available at http:/de.
2004/0174998 Al* 9/2004 Youattetal. ............... 380/210 wikipedia.org/wiki/Grafikpipeline, Aug. 2009.
2004/0239679 Al* 12/2004 Tto etal. .......... 345/555 “Textur (Computergrafik)” (German), Wikipedia, available at http://
2005/0081161 Al 4/2005 MacInr_les el al. de.wikipedia.org/wiki/Textur_ (Computergrafik)., Aug. 2009.
2005/0088447 Al 4/2005  Hanggie et al. “Texture Mapping” (German), Wikipedia, available at http://de.
2005/0125747 Al 6/2005 Nelson et al. wikipedi P :
; pedia.org/wiki/Texture_ Mapping, Aug. 2009.
2005/0237335 Al* 10/2005 Koguchi etal. ............ 345/582 “Image Synthesis,” English Translation of “Bildsynthese” (German)
2005/0267721 Al 12/2005 Thalhammer-Reyero As 000 - ng Y '
2006/0039674 Al 2/2006 Sonoda et al. “Gg' hi ERTI p . « FIURTIRY
5006/0072164 AL* 4/2006 Kato ofal. ... 358/426.07 raphics Pipeline,” English Translation of “Grafikpipeline” (Ger-
2006/0098023 Al 5/2006 Courthard man), Aug, 2009. e . y
2006/0101431 Al 5/2006 Pepin et al. Texture (Computer Graphics),” English Translation of “Textur
2006/0164414 Al 7/2006 Farinelli (Computergrafik)” (German), Aug. 2009. _
2006/0176316 Al* 82006 Nagasakietal. ............. 345/621 “Texture Mapping,” English Translation of “Texture Mapping” (Ger-
2006/0232583 Al 10/2006 Petrov et al. man), Aug. 2009.
2006/0242164 Al  10/2006 Fvans et al. “Mental Mill Functional Overview,” Mental Images GmbH, White
2006/0253214 Al  11/2006 Gross Paper, Feb. 11, 2007. (15 pages).
2006/0294125 Al* 12/2006 Deaven ......ovvevvenn. 707/101 Office Action in U.S. Appl. No. 12/250,458 mailed Feb. 3, 2012.
2007/0018990 Al 1/2007 Shreiner
2007/0018996 Al* 1/2007 Wangetal. ..o 345/592 * cited by examiner



2
1B
9,342,90
US9,

fs5
Sheet 1 0

7,2016

May 1

Patent
S.
U.

d
M__M_U_H.w_o

‘_ozmm
su
pepiw

%

S

g S

o
7 / \
T _
4 \\\\\\E\S .
- g i

-

\\5

=)
B0S pejo
l9yy




US 9,342,901 B2

Sheet 2 of 5

May 17, 2016

U.S. Patent

¢ Old
002
802 w
w INIONI NOILVHINID HIAVHS
V1Va ¥3IAVHS ¥eC~ | reee
=]
] ] NOILVINISIHIIY
37NAOW 0/1 DI4103dS a3¥0oLov4 ~— 022
NOILYINISTHdTY / A38SIHINOD
[ I
aNIONT LS| y3avHS D14103dS
- NOILVINISIHJTY
oz_mm_ozmmwb -zo_kﬁzmmmmnm_mL II:
T =
e 812 0Lz %4
T § {
B - ANvNElT
202 — A¥VHEIT O/1 V.1Va 4axg NOISHIANOD
I ] ]
1
—| AYVHEITNOILJAYONST | | 374 Jaxg 34 1NdNI

} ) {
oow\ 022 12 0L2



US 9,342,901 B2

Sheet 3 of 5

May 17, 2016

U.S. Patent

SYH3AAVHS
old103dS
“NOILVLINZS3IHd3Y

€ Old

IN-N-06€ ¥IAVHS

S3INIONI
ONIH3IANIH

N-0c€

,

|Z-N-0£€ ¥3AVHS

|L-N-0E€ ¥IAVHS

W 2NION3
ONIHIANTY

SWHLRMOOTV
NOISSTHdWOD

N-CL€

|

IW-z-0c€ H3AVHS

¢-0ce

)

N WHLHODTV
NOISS3ddNOD

|2-2-08¢ ¥3AVHS

| 1-2-066 ¥3AVHS

¢ INION3
ONIEIANTH

¢0le

,

IIN-L-06¢ ¥3AVHS

L-0¢¢

)

¢ WHLHOOTY
NOISSTHdNOD

|2-1-06€ ¥IAVHS

[1-1-06€ H3IAVHS

| INION3
ONIEG3ANTY

i-0ig

,

\ oge
00€

L WHLIHOOV
NOISS3ddINOD

,fowm

,fo_‘m




U.S. Patent May 17, 2016 Sheet 4 of 5 US 9,342,901 B2
/400
/
START
404~ 402 408
LOAD BXDF LOAD BXDF
INPUT FILE FILE PROVIDED? B%E 'Bl;%\
406~ |
CONVERT DATA
TO BXDF FORMAT 410
-
RECEIVE USER SELECTION
OF COMPRESSION ALGORITHM
GENERATE COMPRESSED / | 44,
FACTORED REPRESENTATION
r
RECEIVE USER SELECTION | _ 444
OF RENDERING ENGINE
1
GENERATE REPRESENTATION-
SPECIFIC AND RENDERING  |—416
ENGINE-SPECIFIC SHADER
YES ENCRYPT NO
SHADER DATA?
418
420~ | 422
GENERATE GENERATE
ENCRYPTED UNENCRYPTED
SHADER DATA SHADER DATA
(_END )

FIG. 4



US 9,342,901 B2

Sheet 5 of 5

May 17, 2016

U.S. Patent

[ANA N\

ANION3
NOILVHINZO
d3AdVHS

AHJOW3N

806 // \ 908
30IA3d
30IA3d 1Nd1N0O / LNdNI
AV1dSId H3asN

|

|

¥0G

oom\




US 9,342,901 B2

1
MATERIAL DATA PROCESSING PIPELINE

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention generally relates to the field of com-
puter graphics. More specifically, the invention relates to a
material authoring pipeline.

2. Description of the Related Art

The term computer aided design (CAD) refers to a broad
variety of computer-based tools used by architects, engineers,
animators, video game designers, and other graphics and
design professionals. CAD applications may be used to con-
struct computer models or drawings representing virtually
any imaginable two-dimensional (2D) or three-dimensional
(3D) construct. Initially, such a construct is defined in part by
the regions making up the surface of that construct. A render-
ing application may be used to add detail to the construct by
applying materials to various regions of the construct. Addi-
tionally, computer models can be static or animated, where
time is a fourth dimension. For example, rendering a motion-
blurred object is a four-dimensional (4D) rendering process.

The perceived realism of a rendered scene depends in part
on the quality of the materials applied to constructs within the
scene. Materials are typically generated using a program
known in the art as a “shader” that transforms raw data into a
computer representation. The raw data associated with mate-
rials is often generated by scanning surfaces using a material
scanner. For example, a sample of sandpaper may be scanned
to gather raw data that could be used to generate a material
resembling the actual texture of the sandpaper. Material scan-
ners are often configured with a number of mobile light
sources of variable intensity that illuminate the surface from
many different angles and with a range of intensity. A number
of' mobile digital cameras may then record the response of the
surface to the different configurations of lighting and inten-
sity. The data output by a material scanner describes the
response of the scanned surface to the variety of lighting
conditions.

FIG. 1 illustrates the response of a surface 102 to an inci-
dent light beam 104, according to prior art. Depending on the
physical properties of surface 102, light beam 104 may be
reflected away from surface 102, scattered by surface 102,
transmitted through surface 102, scattered upon transmission
through surface 102, and may undergo subsurface scattering
caused by surface 102, among others. Each of these effects
may be measured by cameras surrounding material 102. The
captured data, referred to as “BxDF data,” may be digitally
recorded on a computer memory. A material that represents
the surface may then be manually programmed by a computer
programmer for use when rendering using a particular ren-
dering engine. The material may be programmed to compress
the captured data using a BXxDF compression algorithm.

One drawback of this conventional approach is that mate-
rials based on the captured data are usually generated for use
with only one rendering engine, due to the complex program-
ming involved. Additionally, if a material is created that
implements a first BxDF compression algorithm, then there is
no way to determine how the quality of the resultant material
compares to a material that implements a second BxDF com-
pression algorithm, without explicitly programming both
materials. These inherent limitations cause programming of
materials using conventional techniques to be an inefficient
and cumbersome endeavor.

10

20

40

45

2

Accordingly, there remains a need in the art for an efficient
way to generate shaders from scanner data.

SUMMARY OF THE INVENTION

Embodiments of the invention provide a method for gen-
erating a shader that is used by a rendering engine to render a
visual representation of a computer model. A shader genera-
tion engine (SGE) receives a set of surface data that describes
a surface in view of various lighting conditions. The shader
generation engine compresses the set of surface data to gen-
erate a compressed representation of the set of surface data
based on a selected compression algorithm. The shader gen-
eration engine generates a shader based on the compressed
representation that is configured to be implemented with a
rendering engine, and generates a set of shader data based on
the compressed representation that includes a set of material
characteristics for coloring pixels of the visual representation.

Advantageously, the shader generation process is simpli-
fied compared to prior art techniques. A shader generation
engine is capable of generating different shaders for a par-
ticular surface according to a user selection of a compression
algorithm and a user selection of a rendering engine, allowing
the user to compare the performance quality of shaders asso-
ciated with different compression algorithm-rendering
engine combinations without manually programming the
shaders.

BRIEF DESCRIPTION OF THE DRAWINGS

So that the manner in which the above recited features of
the present invention can be understood in detail, a more
particular description of the invention, briefly summarized
above, may be had by reference to embodiments, some of
which are illustrated in the appended drawings. It is to be
noted, however, that the appended drawings illustrate only
typical embodiments of this invention and are therefore not to
be considered limiting of its scope, for the invention may
admit to other equally effective embodiments.

FIG. 1is a prior art diagram that illustrates the response of
a surface to an incident light beam.

FIG. 2 is a block diagram of a material authoring pipeline,
according to one embodiment of the invention.

FIG. 3 is a conceptual diagram illustrating different com-
binations of compression algorithms and rendering engines
that may be used to generate a representation-specific shader,
according to one embodiment of the invention;

FIG. 4 is a flowchart of method steps for generating a
representation-specific shader and associated shader data,
according to one embodiment of the invention; and

FIG. 5 is a block diagram of a computer system configured
to implement one or more aspects of the present invention.

DETAILED DESCRIPTION

FIG. 2 is a block diagram of a material authoring pipeline
200, according to one embodiment of the invention. The
components illustrated in FIG. 2 may include computer soft-
ware applications executing on existing computer systems,
e.g., desktop computers, server computers, laptop computers,
tablet computers, video game consoles, mobile devices, and
the like. The software applications described herein, however,
are not limited to any particular computer system and may be
adapted to take advantage of new computer systems as they
become available.

Additionally, the components illustrated in FIG. 2 may be
implemented as software applications that execute on a single



US 9,342,901 B2

3

computer system or on distributed systems communicating
over computer networks such as local area networks or large,
wide area networks, such as the Internet. For example, a
shader generation engine (SGE) 202 may include a software
program executing on a client computer system at one physi-
cal location communicating with a rendering engine 208 at
another physical location. Also, in one embodiment, the ren-
dering application 208 and the SGE 202 may be provided as
application program (or programs) stored on computer read-
able storage media such as a CD-ROM, DVD-ROM, flash
memory module, or other tangible storage media.

As shown, material authoring pipeline 200 includes, with-
out limitation, SGE 202, one or more representation-specific
shaders 204, shader data 206 associated with each represen-
tation-specific shader 204, one or more rendering engines
208, and input file 210. Material authoring pipeline 200
optionally includes a BxDF file 214 and an encryption library
226. Input file 210 is provided by a user and includes data that
describes the response of a surface to a variety of lighting
conditions, referred to herein as “surface data.”” The surface
data stored within input file 210 is gathered by scanning the
surface with a material scanner, as previously described in
FIG. 1. Numerous material scanners are commercially avail-
able, and each may generate surface data in a different format.
In one embodiment, the surface data may be converted by the
user into a vendor-specified format. The user may, for
example, program a routine to convert the surface data into
the vendor-specified format, or the user may configure the
material scanner to output surface data directly to the vendor-
specified format. In one embodiment, input file 210 is an
Extensible Markup Language (XML) file.

Input file 210 is received by SGE 202 and processed by a
conversion library 212. Conversion library 212 is configured
to convert the surface data stored within input file 210 to a
material scanner-neutral format for further processing. This
format approximates the response of the surface as a bidirec-
tional reflectance distribution function (BRDF) and a bidirec-
tional transmittance distribution function (BTDF). Referring
back to FIG. 1, the BRDF is shown to correspond to specular
reflection 106 and reflected scatter distribution 108; whereas,
the BTDF is shown to correspond to specular transmission
110 and transmitted scatter distribution 112. These distribu-
tions are collectively known as the “BxDF.” Referring again
to FIG. 2, input file 210 is converted into BxDF data 216 by
conversion library 212.

In one embodiment, BxDF file 214 that includes BxDF
data 216 is directly provided by a user to SGE 202. A user
may, for example, wish to hide proprietary surface data output
by a material scanner. For example, a user may create a
computer program to convert the proprietary surface data into
BxDF file 214. In such an embodiment, input file 210 is not
input by the user, and conversion library 212 is bypassed
altogether.

An /O library 218 within SGE 202 includes subroutines
corresponding to a variety of compression algorithms that
may be used to compress BXxDF data 216. The compression
algorithms implement different “models,” and are provided
as subroutines within the I/O library 218. These models may
include the Phong model, the Blinn-Phong model, the Ward
model, the Cook-Torrence Model, the Ashikmin Model, the
Lafortune model, the He model, the Splines model, the
spherical harmonic model, the spherical wavelets model, the
singular values decomposition model, the normalized
decomposition model, the non-negative matrix factorization
model, the harmonic factorization model, and the importance
sampling oriented factorization model, among others. 1/O
library 218 receives a user selection of a compression algo-

10

15

20

25

30

35

40

45

50

55

60

65

4

rithm and generates a compressed/factored representation
222 of BxDF data 216. In one embodiment, the precision of
the selected compression algorithm may also be specified by
the user.

Compressed/factored representation 222 is stored within a
representation 220 that also includes a representation-specific
/O module 224. Representation-specific /O module 224
receives user input specifying a particular rendering engine
208 and is configured to generate representation-specific
shader 204 and associated shader data 206 based on this
selection. Representation-specific shader 204 is a software
program that is executed by the selected rendering engine 208
to generate a visual representation of the surface associated
with the compressed/factored representation 222. This visual
representation may be output to a computer display.

Shader data 206 is associated with representation-specific
shader 204 and provides data used by representation-specific
shader 204 and rendering engine 208 to generate the pixels
comprising the visual representation of the surface. In one
embodiment, shader data 206 may be encrypted. Encryption
library 226 provides encryption information that may be used
by the representation specific I/O module 224 and the I/O
library 218 to encrypt the shader data 206.

Rendering engines 208 may include software rendering
engines, such as Mental Ray or RenderMan, hardware ren-
dering engines that use OpenGL or DirectX application pro-
gramming interfaces (APIs), or third-party rendering engines
such as Gelato. Rendering engines 208 may be provided
separately from SGE 202, or vendor-provided rendering
engines may be provided with SGE 202. In one embodiment,
representation-specific /O module 224 may perform an opti-
mization on compressed/factored representation 222 based
onauser selection of rendering engine 208 prior to generating
representation-specific shader 204 and shader data 206.

Once representation-specific shader 204 and shader data
206 are generated, rendering engine 208 may render a visual
representation of the surface on a computer display. A user
may then visually inspect the results. The user may also select
a different compression algorithm or a different rendering
engine 208 with which another representation-specific shader
204 may be generated using SGE 202. The first representa-
tion-specific shader 204 and associated shader data 206 may
besaved, and a second representation-specific shader 204 and
associated shader data 206 may then be generated based on a
user selection of a second compression algorithm and/or sec-
ond rendering engine 208. The user may generate any number
of representation-specific shaders 204 and associated shader
data 206 based on the BXDF data 216, where the number may
be equal to the number of compression algorithm subroutines
in the I/O library 218 multiplied by the number of available
rendering engines 208. Each combination may be used to
render a different visual representation of the material
described by BxDF data 216. The user may compare the
results of rendering using one representation-specific shader
with the results of rendering using a different representation-
specific shader to determine which representation-specific
shader provides the better result, without explicitly program-
ming each representation-specific shader from scratch.

In alternative embodiments, a third-party may generate the
representation-specific shader 204 and the associated shader
data 206 based on a selection of a compression algorithm and
a rendering engine 208. The representation-specific shader
204 and the associated shader data 206 may then be shipped
to a user and used to render a visual representation of the
surface with the third-party selected rendering engine 208. In
still further embodiments, multiple rendering engines may
use the same shader data 206 when rendering a scene. Soft-



US 9,342,901 B2

5

ware rendering engines may be configured to share the shader
data 206, and only implement the shaders using a specific
renderer API.

FIG. 3 is a conceptual diagram illustrating different com-
binations of compression algorithms 310 and rendering
engines 320 that may be used to generate a representation-
specific shader 330 for a particular set of BxDF data 216,
according to one embodiment of the invention. Compression
algorithms 310-1 through 310-N may be subroutines
executed by [/O library 218 to implement a model that
approximates the BxDF data 216. Each model may be clas-
sified as an analytical model or a numerical model. An ana-
lytical model represents BxDF data 216 by generating a func-
tion or functions that output an approximation of the original
BxDF data 216 when those functions are evaluated with cer-
tain input data. In one embodiment, the function(s) and the
associated input data occupy a smaller memory footprint than
the original BxDF data 216. A numerical model represents
BxDF data 216 by performing a reversible mathematical
transformation on the BxDF data 216 that results in a
reduced-size representation of the BxDF data 216. For
example, if the BXxDF data 216 is a matrix of numbers, then
matrix may be transformed into several smaller matrices that
would, as a whole, occupy a smaller memory footprint than
the BxDF data 216. To recreate the BXDF data 216, these
smaller matrices could be multiplied together in a particular
sequence. Both the analytical models and the numerical mod-
els may be implemented with varying degrees of accuracy,
and may be used to generate approximations that may be
visually indistinguishable from the original BxDF data 216.

A user may select any of the provided compression algo-
rithms 310-1 through 310-N to compress the BxDF data 216
and may select one of the rendering engines 320-1 through
320-M. Rendering engines 320-1 through 320-M may
include Mental Ray, RenderMan, Maya, or other rendering
engines. Rendering engines 320-1 through 320-M may
implement different rendering techniques, such as ray trac-
ing, rasterization, radiosity, or ray casting, and may be spe-
cifically designed to handle 2D images, 3D images, 3D ani-
mation, and/or 4D images such as motion-blurred images,
among others.

Based on a user selection of one of the compression algo-
rithms 310-1 through 310-N and one of the rendering engines
320-1 through 320-M, SGE 202 generates a representation-
specific shader 330-1.1 through 330-N.M. In practice, SGE
202 also generates shader data 206 (not shown in FIG. 3)
associated with each representation-specific shader 330-1.1
through 330-N.M. Depending on the particular combination
of compression algorithm 310 and rendering engine 208
selected by the user, SGE 202 generates a different represen-
tation-specific shader 204 for a particular set of BXDF data
216. As shown, for N total compression algorithms 310 and M
total rendering engines 208, N*M different representation-
specific shaders 204 are possible for a particular set of BxDF
data 216. In one embodiment, a representation-specific
shader 204 generated for a particular rendering engine 208
may be used by other rendering engines 208 to produce a
visual representation of a surface.

As one having ordinary skill in the art should understand, a
shader is a program associated with a rendering engine used
by that rendering engine to colorize pixels to produce a
desired appearance. For example, a shader could be pro-
grammed for a rendering engine to colorize pixels associated
with a concrete material surface, while another shader could
be programmed for that rendering engine to colorize pixels
associated with a liquid material surface.

10

15

20

25

30

35

40

45

50

55

60

65

6

A user may generate some or all of the possible represen-
tation-specific shaders 330-1 through 330-N.M correspond-
ing to the different combinations of compression algorithms
310-1 through 310-N and rendering engines 320-1 through
320-M, and may compare the effectiveness of each represen-
tation-specific shader 330-1 through 330-N.M for rendering a
given set of BXDF data 216 with a particular rendering engine
208. For example, some representation-specific shaders
330-1 through 330-N.M may be better suited for 3D anima-
tion rendering, while others may be better suited for static
image rendering.

In one embodiment, SGE 202 may generate representa-
tion-specific shader 330 automatically in response to a user
selection of one of the compression algorithms 310 and one of
the rendering engines 320. Importantly, the user is not
required to manually program the representation-specific
shader in a programming language, such as C++, to observe
the performance of a particular combination of compression
algorithm 310 and rendering engine 320. SGE 202 allows a
user to visually inspect the result of rendering using each
representation-specific shader 330 generated for each combi-
nation of compression algorithm 310 and rendering engine
320.

FIG. 4 is a flowchart of method steps for generating a
representation-specific shader and associated shader data,
according to one embodiment of the invention. Persons
skilled in the art will understand that, even though the method
400 is described in conjunction with the systems of FIGS. 2
and 3, any system configured to perform the method steps, in
any order, is within the scope of the present invention.

As shown, the method 400 begins at step 402, where either
a BxDF file 214 or an input file 210 is received by SGE 202.
It a BxDF file 214 is received, then at step 408 SGE 202 loads
the BxDF file 214 into BxDF data 216, and the method 400
advances to step 410.

Ifthe BxDF file 214 is not received at step 402, then at step
404 SGE 202 receives input file 210. At step 406, conversion
library 212 converts the input file 210 into BxDF format and
stores the converted data in BxDF data 216. The method 400
then advances to step 410. In one embodiment, input file 210
is an XML file, and conversion library 212 is an XML con-
version library.

At step 410, SGE 202 receives a user selection of one of the
compression algorithms 310-1 through 310-N. As previously
described in FIGS. 2 and 3, compression algorithms 310-1
through 310-N are subroutines stored by 1/O library 218 that
implement different models that may be used to compress the
BxDF data 216. In one embodiment, a user may specify the
accuracy of the selected compression algorithm 310. At step
412, /O library 218 executes the selected compression algo-
rithm 310 and generates the compressed/factored representa-
tion 222. Compressed/factored representation 222 may
occupy a smaller memory footprint than BXxDF data 216, and
may approximate BxDF data 216.

At step 414, SGE 202 receives a user selection of one of the
available rendering engines 320-1 through 320-M. A user
may select the rendering engine 320 based on, for example,
the surface data represented by BxDF data 216, or the type of
rendering desired, which may include 2D drawings, 3D ani-
mations, or computer simulations. At step 416, representa-
tion-specific /O module 224 generates one of the represen-
tation-specific shaders 330-1 through 330-N.M based on the
data stored in compressed/factored representation 222, the
compression algorithm 310 used to generate compressed/
factored representation 222, and the selected rendering
engine 320.



US 9,342,901 B2

7

At step 418, representation-specific /O module 224 may
generate encrypted shader data 206 according to user speci-
fication. If the user wishes to encrypt shader data 206, then at
step 420 representation-specific /O module 224 accesses
encryption library 226 via I/O library 218 and generates
encrypted shader data 206 based on the data stored in com-
pressed/factored representation 222, the compression algo-
rithm 310 used to generate compressed/factored representa-
tion 222, and the selected rendering engine 220. A user may
opt to encrypt shader data 206 when, for example, input file
210 or BxDF file 214 includes proprietary data or proprietary
data formats. In alternative embodiments, the representation-
specific shader 204 may also be encrypted using the encryp-
tion library 226.

If'the user does not wish to encrypt shader data 206, then at
step 422, representation-specific I/O module 224 generates
shader data 206 based on the data stored in compressed/
factored representation 222, the compression algorithm 310
used to generate compressed/factored representation 222,
and the selected rendering engine 320.

Once a representation-specific shader 330 and associated
shader data 206 have been generated via the method 400, a
visual representation of the surface described by either input
file 210 or BxDF file 214 may be rendered using the selected
rendering engine 320, the representation-specific shader 330,
and the associated shader data 206. The visual representation
may then be output to a visual display.

FIG. 5 is a block diagram of a computer system 500 con-
figured to implement one or more aspects of the present
invention. As shown, the computer system 500 includes a
processor element 502 (e.g., a CPU), a memory 504, e.g.,
random access memory (RAM) and/or read only memory
(ROM), an SGE 202, as described herein, stored within
memory 504, various input/output devices 506, which may
include user input devices such as a keyboard, a keypad, a
mouse, and the like, and storage devices, including but not
limited to, a tape drive, a floppy drive, a hard disk drive or a
compact disk drive, and a receiver, and various display
devices 508, which may include a cathode-ray tube (CRT)
monitor or an liquid-crystal display (LCD) monitor.

In sum, a shader generation engine (SGE) receives surface
data that may be captured with a material scanner and con-
verts the surface data into BxDF data. An 1/O library within
the SGE converts the BXDF data into a compressed represen-
tation based on a user selection of'a compression algorithm. A
representation-specific [/O module receives the compressed
representation and generates a shader and associated shader
data based on a user selection of a rendering engine.

Advantageously, the shader generation process is simpli-
fied compared to prior art techniques. The SGE is capable of
generating different shaders for a particular set of surface data
according to a user selection of a compression algorithm and
a user selection of a rendering engine, allowing the user to
compare the performance quality of shaders associated with
different compression algorithm-rendering engine combina-
tions without manually programming the shaders. Addition-
ally, the SGE may generate shaders and shader data based on
artificially-generated surface data. For example, a user may
provide surface data generated from a computer model of a
material, or may provide surface data produced by blending
several sets of surface data together and modulating the com-
bined surface data with texture data.

While the forgoing is directed to embodiments of the
present invention, other and further embodiments of the
invention may be devised without departing from the basic
scope thereof. For example, aspects of the present invention
may be implemented in hardware or software or in a combi-

10

15

20

25

30

35

40

45

50

55

60

65

8

nation of hardware and software. One embodiment of the
invention may be implemented as a program product for use
with a computer system. The program(s) of the program
product define functions of the embodiments (including the
methods described herein) and can be contained on a variety
of computer-readable storage media. Illustrative computer-
readable storage media include, but are not limited to: (i)
non-writable storage media (e.g., read-only memory devices
within a computer such as CD-ROM disks readable by a
CD-ROM drive, flash memory, ROM chips or any type of
solid-state non-volatile semiconductor memory) on which
information is permanently stored; and (ii) writable storage
media (e.g., floppy disks within a diskette drive or hard-disk
drive or any type of solid-state random-access semiconductor
memory) on which alterable information is stored. Such com-
puter-readable storage media, when carrying computer-read-
able instructions that direct the functions ofthe present inven-
tion, are embodiments of the present invention. Therefore, the
scope of the present invention is determined by the claims that
follow.

What is claimed:

1. A method for generating a shader that is used by a
rendering engine to render a visual representation of a com-
puter model, the method comprising:

receiving a set of surface data that describes a surface in

view of various lighting conditions;
compressing the set of surface data to generate a com-
pressed representation of the set of surface data based on
a selected compression algorithm;

selecting a rendering engine;

generating a shader based on the rendering engine, the
selected compression algorithm, and the compressed
representation of the set of surface data; and

generating a set of shader data, via the shader, based on the
compressed representation, wherein the shader data
includes a set of material characteristics for coloring
pixels of the visual representation.

2. The method of claim 1, wherein the set of surface data is
derived at least in part from a bidirectional reflectance func-
tion and a bidirectional transmittance function.

3. The method of claim 2, wherein the set of surface data is
included in an Extensible Markup Language (XML) file.

4. The method of claim 2, further comprising the step of
converting the set of surface data to bidirectional reflectance
function data and bidirectional transmittance function data.

5. The method of claim 1, further comprising the step of
encrypting the shader data to generate encrypted shader data.

6. The method of claim 5, wherein the set of surface data
comprises proprietary surface data, and the encrypted shader
data prohibits access to the proprietary surface data.

7. The method of claim 1, wherein the compression algo-
rithm implements a Phong model, a Blinn-Phong model, a
Ward model, a Cook-Torrence Model, a Ashikmin model, a
Lafortune model, a He model, a Splines model, a spherical
harmonic model, a spherical wavelets model, a singular val-
ues decomposition model, a normalized decomposition
model, a non-negative matrix factorization model, a har-
monic factorization model, or an importance sampling ori-
ented factorization model.

8. The method of claim 7, wherein the step of compressing
the set of surface data is based on an accuracy value for the
compression algorithm.

9. The method of claim 1, wherein the rendering engine
comprises either a software rendering engine or a hardware
rendering engine configured to implement ray tracing, raster-
ization, radiosity, or ray casting operations.



US 9,342,901 B2

9

10. The method of claim 1, further comprising:

compressing the set of surface data to generate a second

compressed representation of the set of surface data
based on a second selected compression algorithm;
selecting a second rendering engine;

generating a second shader based on the second rendering

engine, the second selected compression algorithm, and
the second compressed representation of the set of sur-
face data; and

generating a second set of shader data, via the second

shader, based on the second compressed representation,
wherein the second set of shader data includes a second
set of material characteristics for coloring pixels of the
visual representation.

11. The method of claim 1, further comprising providing
the shader data to the shader.

12. The method of claim 1, wherein the compression algo-
rithm is selected by a user from a library of compression
algorithms, and wherein the rendering engine is selected by
the user from amongst a plurality of rendering engines.

13. A non-transitory computer-readable medium that,
when executed by a processor, cause a shader generation
engine to generate a shader used by a rendering engine to
render a visual representation of a computer model, the
method comprising:

receiving a set of surface data that describes a surface in

view of various lighting conditions;
compressing the set of surface data to generate a com-
pressed representation of the set of surface data based on
a selected compression algorithm;

selecting a rendering engine;

generating a shader based on the rendering engine, the
selected compression algorithm, and the compressed
representation of the set of surface data; and

generating a set of shader data, via the shader, based on the
compressed representation, wherein the shader data
includes a set of material characteristics for coloring
pixels of the visual representation.

14. The non-transitory computer-readable medium of
claim 13, wherein the set of surface data is derived at least in
part from a bidirectional reflectance function and a bidirec-
tional transmittance function.

15. The non-transitory computer-readable medium of
claim 14, wherein the set of surface data is included in an
Extensible Markup Language (XML) file.

16. The non-transitory computer-readable medium of
claim 14, further comprising the step of converting the set of
surface data to bidirectional reflectance function data and
bidirectional transmittance function data.

17. The non-transitory computer-readable medium of
claim 13, further comprising the step of encrypting the shader
data to generate encrypted shader data.

18. The non-transitory computer-readable medium of
claim 17, wherein the set of surface data comprises propri-
etary surface data, and the encrypted shader data prohibits
access to the proprietary surface data.

19. The non-transitory computer-readable medium of
claim 13, wherein the compression algorithm implements a
Phong model, a Blinn-Phong model, a Ward model, a Cook-
Torrence Model, a Ashikmin model, a Lafortune model, a He
model, a Splines model, a spherical harmonic model, a
spherical wavelets model, a singular values decomposition
model, a normalized decomposition model, a non-negative
matrix factorization model, a harmonic factorization model,
or an importance sampling oriented factorization model.

10

15

20

25

30

35

40

45

50

55

60

65

10

20. The non-transitory computer-readable medium of
claim 19, wherein the step of compressing the set of surface
data is based on an accuracy value for the compression algo-
rithm.

21. The non-transitory computer-readable medium of
claim 13, wherein the rendering engine comprises either a
software rendering engine or a hardware rendering engine
configured to implement ray tracing, rasterization, radiosity,
or ray casting operations.

22. The non-transitory computer-readable medium of
claim 13, further comprising:
compressing the set of surface data to generate a second
compressed representation of the set of surface data
based on a second selected compression algorithm;

selecting a second rendering engine;

generating a second shader based on the second rendering
engine, the second selected compression algorithm, and
the second compressed representation of the set of sur-
face data; and

generating a second set of shader data, via the second
shader, based on the second compressed representation,
wherein the second set of shader data includes a second
set of material characteristics for coloring pixels of the
visual representation.

23. The non-transitory computer-readable medium of
claim 13, wherein the shader data is provided to the shader.

24. The non-transitory computer-readable medium of
claim 13, wherein the compression algorithm is selected by a
user from a library of compression algorithms, and wherein
the rendering engine is selected by the user from amongst a
plurality of rendering engines.

25. A system for generating a shader that is used by a
rendering engine to generate a visual representation of a
computer model, the system comprising:

a processor; and
one or more memories that store instructions configured to:

receive a set of surface data that describes a surface in
view of various lighting conditions;

compress the set of surface data to generate a com-
pressed representation of the set of surface data based
on a selected compression algorithm;

select a rendering engine;

generate a shader based on the rendering engine, the
selected compression algorithm, and the compressed
representation of the set of surface data; and

generate a set of shader data, via the shader, based on the
compressed representation, wherein the shader data
includes a set of material characteristics for coloring
pixels of the visual representation.

26. The system of claim 25, wherein the one or more
memories include a conversion library configured to imple-
ment the step of receiving the set of surface data.

27. The system of claim 25, wherein the one or more
memories include an input/output library configured to
implement the step of compressing the set of surface data.

28. The system of claim 25, wherein the one or more
memories include a representation-specific input/output
module configured to implement the steps of generating the
shader and generating the set of shader data.

29. The system of claim 25, wherein the one or more

memories are further configured to provide the shader data to
the shader.



US 9,342,901 B2
11

30. The system of claim 25, wherein the compression algo-
rithm is selected by a user from a library of compression
algorithms, and wherein the rendering engine is selected by
the user from amongst a plurality of rendering engines.

#* #* #* #* #*

12



